CT vs DT signals

Tuesday, January 4, 2022 1:55 PM

Confinous (time:
$$
\alpha(t)
$$
, $\gamma(t)$, $\epsilon(t)$: $t \in \mathbb{R} \rightarrow \mathbb{C}$

\nDiscrete (time: $\alpha \ln 1$, $\gamma \ln 1$, $\epsilon \ln 1$: $n \in \mathbb{Z} \rightarrow \mathbb{C}$

\nReferences for the following expression:

\n
$$
C = \alpha + b_{j} = re^{j\theta}
$$
\n
$$
r = \sqrt{a^{2} + b^{2}}
$$
\n
$$
\alpha = r \cos \theta
$$
\n
$$
b = r \sin \theta
$$

Basic Operations on Signals
Wednesday, January 5, 2022 6:18 PM

Wednesday, January 5, 2022

Time Shift			
$\alpha(t) \rightarrow \alpha(t - t_o)$	$\epsilon_o \in \mathbb{R}$	$\epsilon_o/n_o \rightarrow \infty$	$\delta_o/n_o \rightarrow \infty$
$\alpha \ln 1 \rightarrow \alpha (n - n_o)$	$n_o \in \mathbb{Z}$	$\epsilon_o/n_o \leftrightarrow \infty$	$\epsilon_o/n_o \leftrightarrow \infty$
$\frac{1}{2} \cdot \frac{1}{2} \$			

Periodic, Energy Power, Even Odd Signals

Monday, January 10, 2022 7:53 PM

Periodic Signals: CT:
$$
\kappa(t)
$$
 is periodic iff there exist a T such that $\kappa(t+T) = \kappa(t)$
DT: κ [n] is periodic iff there exists a N such that κ [n+N] = κ [n]

Fundamental Period: smallest Tor N that is a period of a signal, To or No.
Wo (fundamental frequency) =
$$
\frac{2\pi}{T_o}
$$
 or $\frac{2\pi}{Ns}$

Energy *flaver* d
$$
\Delta
$$
 Sígna! $E = \int_{4}^{4} |\gamma(t)|^2 dt$

$$
E = \sum_{n=n}^{n_2} |\gamma(n_1)|^2
$$

Even (old)	Even:	$\alpha(-t) = \alpha(t)$	$\alpha[-n] = \alpha[n]$
Odd:	$\alpha(-t) = -\alpha(t)$	$\alpha[-n] = -\alpha[n]$	

Decomposition Theorem

Tuesday, January 11, 2022 2:11 PM

Every CI Signal
$$
\kappa(t)
$$
 can be represented as:
\n $\kappa(t) = \kappa_e(t) \rightarrow \kappa_o(t)$
\nwhere $\kappa_e(t) = \frac{\kappa(t) \cdot \kappa(-t)}{2}$, $\kappa_o(t) = \frac{\kappa(t) \cdot \kappa(-t)}{2}$
\nEvery 01 Signal $\kappa[n]$ can be represented as:
\n $\kappa[n]$ = $\kappa_e[n]$ + $\kappa_o[n]$
\nwhere $\kappa_e[n] = \frac{\kappa[n] \cdot \kappa[-n]}{2}$, $\kappa_o[n] = \frac{\kappa[n] \cdot \kappa[-n]}{2}$

Unit Impulse Signal, Complex Exponential Signals

Wednesday, January 12, 2022 5:46 PM

Complex exponential signals: ce^{at}, ce^{an} where $c, a \in \mathbb{C}$

Use We can represent signals as linear combinations of unit impulse signals
and complex exponential signals.

Therefore, superposition applies

$$
\frac{\partial e}{\partial t} \times [n] = e^{j \cdot 2n}
$$
 is period in H. 2 is a rational multiple of 2n
thus $\times [n] = e^{j \cdot \frac{m2n}{N}n}$ where $N = \frac{2 \times m}{\Omega}$ is the fundamental period

DT Impulse, Step Signal

Wednesday, January 12, 2022 5:55 PM

Def Dr Impulse and Unit step:

\n
$$
\delta [n] = \begin{cases}\n1 & n = 0 \\
0 & n \neq 0\n\end{cases}
$$
\nSelf Dr step signal:

\n
$$
M[n] = \begin{cases}\n1 & n \ge 0 \\
0 & n < 0\n\end{cases}
$$
\nSelf We can define u[n] in terms of $\delta [n]$:

\n
$$
M[n] = \sum_{k=0}^{\infty} \delta[n-k], \quad \text{let } k=n-k \text{ then } n[n] = \sum_{\ell=-\infty}^{n} \delta[\ell]
$$
\n
$$
M[n] = \sum_{\ell=-\infty}^{\infty} \delta(\ell), \quad \text{which is like } \alpha \text{ DT "integral" of $\delta[\ell]$ from $\ell = \infty \rightarrow n$ \n
$$
M[n] = \sum_{k=-\infty}^{\infty} \delta[\ell], \quad \text{which is like } \alpha \text{ DT "integral" of $\delta[\ell]$ from $\ell = \infty \rightarrow n$ \n
$$
M[n] = \sum_{k=-\infty}^{\infty} \delta[\ell], \quad \text{thus for any } \chi[n] = \sum_{k=-\infty}^{\infty} \chi[k], \delta[n-k]
$$
$$
$$

Det We can debine SLn] from u [n]: $\{ \lfloor n \rfloor = u [n] - u [n-1] \}$

CT Impulse, Step Signal

Monday, January 17, 2022 2:36 PM

$$
\begin{array}{lll}\n\text{Det} & \text{CT} & \text{unit step} & \text{function:} & \text{u}(t) = \begin{cases} 0 & t < 0 \\
1 & t > 0 \\
0 & \text{else} \end{cases} \\
\text{Det} & \text{CT} & \text{impulse} & \text{func} & \text{time:} & \text{S}(t) = \begin{cases} \infty & t < 0 \\
0 & \text{else} \end{cases} \\
\text{Thus:} & \int_{-\infty}^{t} \delta(T) dT = u(t) \\
\end{array}
$$

Properties of Delta Function

Wednesday, January 12, 2022 6:11 PM

Properties of $S[n]$:
1) Sampling Property: $x[n]$: $S[n] = x[0] \cdot S[n]$
2) $S(\text{ling Property: } \sum_{n=-\infty}^{\infty} x[n] \cdot S[n-n_{0}] = x[n_{0}]\cdot S[n-n_{0}]$
3) Representation property: $\sum_{n=-\infty}^{\infty} x[n] \cdot S[n_{0}]= x[n_{0}]$
4) $\sum_{n=-\infty}^{\infty} x[n_{0}]\cdot S[n_{0}]= x[n_{0}]$
5) Representation property of $S[n]$: For any $D1$ signal $x[n]$
1) Sampling Property: $X(t)$: $S(t-1) = x(T) \cdot S(t-1)$
2) S_{hi} S_{liag} Property: $\sum_{n=-\infty}^{\infty} x(t) \cdot S(t-1) = x(T) \cdot S(t-1)$
3) Representations Property: $x(t) = \int_{-\infty}^{\infty} x(T) s(t-T) \cdot T$

Wednesday, January 19, 2022 5:25 PM

Det Systems are a mapping from input signals to output signals $Cam be$ $CT \rightarrow CT$ or $DT \rightarrow DT$ be actual system or mathematical system C_{on} Properties: 1) Memoryless: output at time the only depends on input at the 2) BIBO Stability! output is bounded given a bounded input ' 4) Invertible: distinct inputs create distinct outputs, mapping is one-to-one 5) Time Inverient: it $\alpha_i(b) \rightarrow g_i(b)$ then $\alpha_i(b-b_0) \rightarrow g_i(b-b_0)$ iff system is Time Invariant 6) Linear: if $x_1 \rightarrow y_1$ $x_2 \rightarrow y_2$ then $ax_1 + bx_2 \rightarrow ay_1 + by_2$ iff system is Linear

Causal LTI System

Monday, January 24, 2022 4:06 PM

y [a] or y (e), we call this the impulse response, h [n] or h (t)

DT Convolution Sum

Monday, January 24, 2022 5:59 PM

Del biven any input
$$
xIn]
$$
:

\n
$$
x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$
\nby representation property\nGiven the impulse response $hIn]$ of an LTL system:

\n
$$
y[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$
\n
$$
\frac{1}{\sqrt{2}} \delta[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$
\nWhen the variable x is a $x[n]$ is a $x[n]$.

\nLet the probability $x[n]$ is $\sum_{k=-\infty}^{\infty} x[k]$ is the n as constant 2 is $\ln n-k$ as the function of k is the n is $\ln n$ is $\ln n$.

\nBy applying $x[k]$ to $h[n-k]$ and ρ is $\ln n$.

\nBy applying $x[k]$ is $h[n-k]$ and ρ is $\ln n$.

\nBy $x[n]$ is $\ln n$ is $\ln n$.

\nThus, $\ln n$ is $\ln n$.

2) Distribatix:ty:
$$
(a+b)*(c-d) = axc + a*d + bx c - b*d = bc
$$
.
3) Aspolin (with 1) and have $c = a + b$

$$
39 \times 1330
$$

CT Convolution Integral

Wednesday, January 26, 2022 4:50 PM

Def given some
$$
\alpha(k)
$$
:

\n
$$
\frac{a}{\alpha} \alpha(k\alpha) a \alpha(k+k\alpha) = \int_{-\infty}^{\infty} \alpha(k) \alpha(k) dk
$$
\n
$$
\frac{b}{\alpha} \alpha(k) = \lim_{\alpha \to 0} \frac{1}{\alpha} \frac{1
$$

 $\ddot{}$

Properties:

1)
$$
\alpha(t) \neq \delta(t-t_{0}) = \alpha(t-t_{0})
$$

\n2) Distributivity: $(a+b)*(cd) = \alpha * c + \alpha * d + \beta * c + \beta * d = bc$.
\n3) Associativity: $\alpha * b * c = \alpha * (b * c) = (\alpha * b) * c$

Properties of Causal LTI Systems from Impulse Response

Thursday, January 27, 2022 2:00 PM

1) Memoryless members iff
$$
hLnJ = \alpha \delta LnJ
$$
 for $\alpha \in C$
\nmemoryless if $h(L) = \alpha \delta(L)$ for $\alpha \in C$
\n2) $(\alpha \nu \delta \alpha)!$: $\alpha \nu \nu \alpha!$:
\n $l + h(L) = 0$ for $\alpha \in C$
\n2) $\Gamma(\alpha \nu \delta \alpha)$:
\n $l + h(L) = 0$ for $\alpha \in C$
\n3) $\Gamma(\alpha \nu \sigma + b) = 0$ for $\alpha \in C$
\n4) $\Gamma(\alpha \nu \sigma + b) = 0$ for $\alpha \nu \alpha \nu \alpha$ if $\alpha \nu \$

Eigenfunction, Transfer Function, Frequency Response,

Monday, January 31, 2022 5:39 PM

Det	Given	some	system	16b	cmd	in	Suming of inputs	Re(H) such that:
$\gamma_{k}(k) \rightarrow h(k) \rightarrow \lambda_{k} \alpha_{k}(k)$	and	$\lambda_{k} \leq 0$	and	the	to	the system		
$\text{Total} \quad \gamma_{k}(k) = \sum_{k=1}^{\infty} a_{k} \alpha_{k}(k)$	and	the						
$\gamma_{k}(k) = \sum_{k=1}^{\infty} a_{k} \alpha_{k}(k)$	and	the						
$\text{Mean} \quad \gamma_{k}(k) \rightarrow h(k) \rightarrow \sum_{k=1}^{\infty} \lambda_{k} a_{k} \alpha_{k}(k)$								
$\text{Mean} \quad \alpha_{k} \leq 0 \rightarrow h(k) \rightarrow \sum_{k=1}^{\infty} \lambda_{k} a_{k} \alpha_{k}(k)$	and	the						
$\text{Area} \quad \beta_{k} \geq 0$	and	the	the	the				
$\text{Area} \quad \beta_{k} \geq 0$	and	the	the	the				
$\text{Area} \quad \beta_{k} \geq 0$	and	the	the	the				
$\text{Area} \quad \beta_{k} \geq 0$	and	the	the	the				
$\text{Area} \quad \beta_{k} \geq 0$	and							

Continuous Time Fourier Series

Monday, January 31, 2022 6:03 PM

Def	for any $x(t)$ with finite energy over one period:
$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j k \omega_0 t}$ where $a_k = \frac{1}{T} \int_{T} x(t) e^{-j k \omega_0 t} dt$	
$\frac{N_{\theta}t_{\alpha}(t_{\theta})}{N_{\theta}t_{\theta}} = \frac{2\pi}{T}$	
$\frac{N_{\theta}t_{\alpha}(t_{\theta})}{N_{\theta}t_{\theta}} = \frac{F.S.}{N_{\theta}}$	
$\frac{N_{\theta}t_{\theta}(t_{\theta})}{N_{\theta}} = \frac{F.S.}{N_{\theta}}$	
$\frac{N_{\theta}t_{\theta}(t_{\theta})}{N_{\theta}}$	
$\frac{N_{\theta$	

Discrete Time Fourier Series

Wednesday, February 2, 2022 7:03 PM

Def	For any x C.3 with x C.1 = $\sum_{k=5N5} a_{ik}e^{jkw_{0}n}$	where $a_{k} = \frac{1}{N} \sum_{n=4N5} xLn]e^{-jkw_{0}n}$
$\sqrt{b\6e}$: $w_{0} = \frac{2\pi}{N}$ and N ² !	and $\frac{a_{k+N} - a_{k}}{N}$	
$\frac{N_{0}t_{0}e^{j} \cdot w_{0}}{N_{0}e^{j}}$: $\frac{2\pi}{N_{0}e^{j}} \cdot \frac{a_{k}}{N_{0}e^{j}}$	and $\frac{a_{k+N} - a_{k}}{N_{0}e^{j}}$	
1) Linearify: $aX[n] + by[n] \leftarrow aX_{k} + by_{k}$		
2) Time Shift: $x[n-n_{0}] \leftarrow aX_{k}e^{-jkw_{0}n_{0}}$		
3) Time Reversal: $x[n-n_{0}] \leftarrow aX_{k}$ (does not change)		
4) Time Scale: $x[a \neq 1] \leftarrow aX_{k}$ (does not change)		
5) Multiplication: $x[n] \cdot y[n] \leftarrow aX_{k} \leftarrow a_{k}$		
6) Congugation: $\alpha_{k}^{*}[n] \leftarrow a_{k}$		
7) Parseval: $\frac{1}{N} \sum_{n=4N^{5}} \alpha[n]^{2} = \sum_{k=4N^{5}} a_{k} ^{2}$		

Solving Output of LTI Given FS and H(s)

Tuesday, February 8, 2022 2:17 PM

Det biven some periodic input and the impulse response of LTI system, we can find the subput. Assume fundamental frequency is w.

$$
\underline{CT}: \quad \underline{T} + \quad \underset{K=-\infty}{\times} (t) = \sum_{k=-\infty}^{\infty} a_k e^{jkw_0 t} \qquad \text{and} \qquad \underline{H(jkw_0)} = \int_{-\infty}^{\infty} h(T) e^{-jkw_0 T} dT
$$
\nthen \quad y(t) = \sum_{k=-\infty}^{\infty} b_{k} e^{jkw_0 t} \qquad \text{where} \qquad b_{k} = a_{k} \cdot \underline{H(jkw_0)}

$$
DT: Tf \propto [n] = \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} n} \quad \text{and} \quad H(e^{j k \omega_{0}}) = \sum_{N=-\infty}^{\infty} h[N] e^{-j k \omega_{0} N}
$$

then $g[n] = \sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{0} n} \quad \text{where} \quad b_{k} = a_{k} \cdot H(e^{j k \omega_{0}})$

Continuous Time Fourier Transform

Wednesday, February 9, 2022 5:15 PM

Det	Given	some	non-periodic	signal	$x(t)$:
$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(j\omega) e^{j\omega t} \, d\omega$					
$\chi(j\omega) = \int_{-\infty}^{\infty} \chi(t) e^{-j\omega t} \, d\omega$					
Det	Given	some	periodic	signal	$x(t)$ with fundamental frequency ω_0 :
$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j k \omega t}$	where	a_k are the Fourier series coefficients			
$\chi(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega)$					
$N_{\text{data}} = \frac{\omega}{\omega} \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega)$					

Amplitude Modulation

Thursday, February 17, 2022 2:01 PM

Monday, February 21, 2022 4:27 PM

Discrete Time Fourier Transform

Wednesday, February 23, 2022 5:08 PM

Def given some a periodic
$$
\alpha
$$
 C13

\n $\chi(n) = \frac{1}{2\pi} \int_{2\pi} \chi(e^{j\omega}) e^{j\omega n} \, du$

\n $\chi(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \chi(n) e^{-j\omega n}$

\nQ2f Given some periodic signal α (4) with fundamental frequency ω .

\n $\chi[n] = \sum_{k=-\infty}^{\infty} \alpha_k e^{jkw\omega n}$

\n $\chi(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \alpha_k \delta(\omega - k\omega_0)$

\nand $N \geq 0$ the fundamental period

Monday, February 28, 2022 5:03 PM

Def biven some input $\kappa(t)$ we can process it by:
1) Converting $\kappa(t) \rightarrow \kappa(n)$ by sampling with period T
2) Process $\kappa(n)$ using some system $h[n]$ or $H(e^{j\omega})$ to get y[n]
3) convert $y(n)$ → $y(t)$ by applying a low pass of. Here to Y(e^{j\omega})
<u>Proceedane</u> : given $\kappa(t)$ the input and $\rho(t)$ an impulse train with period T:
1) $\kappa_p(t) = \kappa(t) p(t) \longleftrightarrow X_p(j\omega) = \frac{1}{2\pi} X(j\omega) + p(j\omega)$
= $\frac{1}{T} \sum_{k=-\infty}^{\infty} X(j(\omega - k\frac{2\pi}{T}))$
2) $\kappa d[n] = \kappa(n)$

3) apply fileus: yd[1] = xd[1] * h[n]
$$
\leftarrow
$$
 Yd(e^{j-1}) = χ (e^{j-1}) μ (e^{j-1})

4)
$$
q_{p}(t) = q(nT)
$$
 $\longrightarrow Y_{p}(j\omega) = Y_{d}(ej\omega)$ where $\omega = \frac{12}{T}$
5) $q_{c}(t) = y_{p}(t) * h_{LP}[n]$

Laplace Transform

Wednesday, March 2, 2022 4:23 PM

Let $CTFT$ and $0TFT$ only apply to since energy signals and while LT systems		
Let can use $Lapluc$ Transforms to $amalyze$ non finite energy signals		
Let For α <i>continuous</i> time signal $\alpha(t)$:		
$\alpha(t)$	$\frac{d}{d\alpha}$	$\chi(s)$ = $\int_{-\infty}^{\infty} \alpha(t) e^{-st} dt$ for $s = \sigma - j\omega$
The values of s for which $t^{\frac{1}{2}}\alpha(t)$ exists is the ROC		
$Existence$	$LT\{\alpha(e)\}$ exists iff $CTFT\{\alpha(e)\}$ exists	
$i f$	$s = j\omega$ then $LT\{\alpha(t)\}$ exists iff $CTFT\{\alpha(t)\}$ exists	
$i f$	$\alpha(t)$ is absolutely integrable, then ROC contains $j\omega$ axis	
Det	Given $t \{\alpha(t)\}$ is a bisolubely integrable, then ROC contains $j\omega$ axis	
Det	Given $t \{\alpha(t)\}$ = $\frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} N(s) e^{st} ds$ \n	

Common Laplace Transform Pairs

Thursday, March 3, 2022 1:54 PM

$$
\frac{Common \quad \text{L pairs:} \quad e^{-at} \quad u(t) \quad \text{L}{\longrightarrow} \quad \frac{1}{s+a} \quad \text{for} \quad Re\{s\} > - Re\{a\}}{-e^{-at} \quad u(-t) \quad \text{L}{\longrightarrow} \quad \frac{1}{s-a} \quad \text{for} \quad Re\{s\} < - Re\{a\}}
$$

Properties of Laplace Transform

Thursday, March 3, 2022 1:58 PM

 \cdot_{χ}

Table 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Initial Value Theorem:

If $x(t) = 0$ for $t < 0$ and $x(t)$ contains no impulses or higher-order singularities at $t = 0$, then $x(0^+) = \lim_{s \to \infty} s X(s)$.

Final Value Theorem:

If $x(t) = 0$ for $t < 0$ and $x(t)$ has a finite limit as $t \to \infty$, then $\lim_{t \to \infty} x(t) = \lim_{s \to 0} s X(s)$.

Zeros and Poles. ROC Constraints

Thursday, March 3, 2022 2:05 PM

Def	Given	N(s)	which is rational:																					
\n $\gamma(s) = \frac{N(s)}{D(s)}$ \n	\n $\omega_{\text{here}} = N(s)$ \n	\n $N(s) = \frac{N(s)}{D(s)}$ \n	\n $S(s) = \frac{N(s)}{D(s)}$ \n	\																				